was successfully added to your cart.

Basket

Category

News

Radon maps don’t show radon levels in a specific building

By | Measurement, News | No Comments

‘Radon maps’ is a term that frequently crops up when talking about the risk of radon. A radon map provides a general picture of the areas where there is a risk of high radon levels. These maps are available at both national and regional level. The problem with radon maps is, however, that they are a very blunt tool for anyone wanting to find out about radon levels in a specific building.

Despite this, Radonova is seeing a growing number of cases where private individuals and workplaces are using radon maps to try to determine the radon level in their specific indoor environment.

“Radon maps are designed to be used when you want a more general geographic breakdown of low-risk and high-risk zones. It is, however, very difficult to draw any reliable conclusions from these about radon levels inside a particular building,” comments Karl Nilsson, CEO of Radonova Laboratories.

“The relevant authorities and experts often have good knowledge of the applications for which radon maps can be used. Problems tend to arise when the general public draw conclusions from the maps about radon levels in their own home.”

This is why radon maps do not show radon levels in a specific building

Below are some of the reasons why radon maps are not a reliable tool for determining radon levels in a specific building.

Radon maps do not show local variations

When producing a radon map, very few measurements are performed per square kilometre. Radon levels can vary significantly in such a large area and also markedly between buildings on the same street. Radon levels indoors largely depend on the building’s construction and the air permeability of the soil, which can vary widely locally.

There is no standard for the production of radon maps

To produce a radon map, measurement data is either obtained by measuring ground radon levels or using data from indoor measurements in the area. With ground radon measurement there is no clear link between the level of radon in the ground and indoor radon levels. There is certainly an increased risk with high ground radon levels, but other factors, such as construction technology, can have a greater impact. However, if the radon map is based on indoor measurements, then the results are therefore heavily dependent on the type of building structure where the measurement was recorded. This in turn need not be relevant in any way for another building close by.

Radon can be emitted by building materials

In a country like Sweden the use of blue lightweight concrete is a clear example of how a building material comes into play when measuring radon levels. In Sweden around 15 per cent of all elevated radon values are caused by blue lightweight concrete. A radon map, however, does not take into account the material used in a building.

The maps can be generated from old measured values

Measured radon levels are to some extent ‘perishable’. A measurement taken 15 years ago, for example, is no longer reliable. A lot may have happened over the years in and around the building in question to change radon levels. Modernisations, changes to ventilation and groundwork are just a few examples of factors that can have a major impact on indoor radon levels. The Swedish Radiation Safety Authority recommends performing a new measurement every 10 years.

“With this in mind, you shouldn’t rely on radon maps if you want to know what the radon levels are in a specific building. Even if you live in an area that is defined on the radon map as a low-risk zone, there may still be very high radon levels indoors. Given that radon, after smoking, is the most common cause of lung cancer, there is every reason not to rely on this type of map when trying to determine radon levels in the home and at workplaces,” concludes Karl Nilsson.

Measure in the building

The only way to get a reliable picture of radon levels in indoor air is to measure them. This can be done in an affordable manner using radon detectors. Radon maps still have a role to play, however, as they can provide the authorities with an overview that makes it easier to prioritise inspection efforts.

Radon map

COIRA chooses radon detectors from Radonova for major international study

By | Measurement, News | No Comments

Radonova Laboratories will be providing radon detectors to a major international study to be run by COIRA (the Coalition of International Radon Associations). The aim of the project is to compare radon measurement results obtained by the world’s leading monitoring institutions in the field of radiation protection. The project started in August 2018 and will run for two years.

“This is a very important project. It will help us towards a more consistent way of working and greater precision in our work on radon measurements. COIRA provides a forum for the collective global expertise on radon. We are pleased to be an active part of this forum in terms of both measuring equipment and knowledge,” says Karl Nilsson, a member of the board of COIRA and CEO of Radonova Laboratories.
coira

Radonova’s radon specialist José-Luis Gutiérrez Villanueva is a member of the project committee. He is there as an expert and representative of ERA (the European Radon Association), one of the project’s scientific coordinators (COIRA). Gutiérrez Villanueva is also involved in the work of analysing the data collected.

“Such a comprehensive comparative study means that we can expect to have access to reference tools within a few years.  This will make radon monitoring safer and more effective,” he explains.

COIRA was formed in 2015 and has five member associations: ERA (the European Radon Association), AARST (the American Association of Radon Scientists and Technologists), CARST (the Canadian Association of Radon Scientists and Technologists), UKRA (the UK Radon Association) and NGRA (the Nordic Group of Radon Associations).

For more information on the project, visit www.coiraradon.com.

You can read more about radon and the associated risks here. We have also put together a page of questions and answers on radon monitoring. You can find it here.

Finland ahead of the rest of Europe

By | News, Workplace | No Comments

-Radon measurement in the workplace is commonplace 

It’s not just in school education that Finland is ahead of the rest of Europe. When it comes to measuring radon in workplaces, they are a step ahead there too. Measuring radon in Finnish workplaces has been commonplace for a number of years for Radonova’s partner Suomen radonhallinta.  

Even before the new Radiation Protection Act was introduced on 1 June this year, the Swedish Work Environment Authority imposed the requirement that the hygienic limit value for radon (0.36 MBqh/m3) must not be exceeded in Swedish workplaces. And yet there were only around 3,000 instances of workplace measurement in Sweden during 2017, compared with around 70,000 instances of measurement in homes. In the rest of Europe also there is less workplace measurement compared with measurement in homes.

“It is hard to say exactly how much workplace measurement we have performed, but it is well into the thousands. Then of course there are several other operators also measuring radon in workplaces. In Finland there are around 60 high-risk areas where employers are obliged to measure radon in the workplace. Considering that radon is reckoned to cause lung cancer in 300 to 400 Finns every year, there is of course every reason to comply with the existing regulations,” comments Jarkko Ruokonen at Suomen radonhallinta.

Common cause of lung cancer

“Although we are seeing increased demand for workplace measurement this year, it is clear that a lot of workplaces will not manage to comply with the new legal requirements. Here it seems as if Finland has been quick to take the radon issue seriously. Just as in the rest of Europe, radon is, after smoking, the single biggest cause of lung cancer in the population. If we are to bring the figures down, greater efforts are required, as is cooperation between employers, public authorities and private operators,” comments Karl Nilsson, CEO of Radonova Laboratories.

“If you haven’t already taken radon measurements at your workplace then it is high time you did so. Quite apart from the fact that as an employer you are risking exposing your employees to a serious health hazard, there can be serious repercussions for employers who do not comply with the law. Here I absolutely think that the rest of Europe should be aiming to take the radon issue at least as seriously as Finland does,” concludes Karl Nilsson.

Finland

Jarkko Ruokonen at Suomen radonhallinta measures radon at a workplace in Finland. “Our cooperation with Radonova is going really well. They have a modern lab that is certified in accordance with ISO17025, reliable products and excellent customer service.”

Radonova makes first delivery of radon detectors to Africa

By | News | No Comments

Radonova’s first project on the African continent.

Swedish Radonova Laboratories has received an order from the IAEA for radon detectors to monitor radon in Cameroon.

The contract is not only for the delivery of detectors, but also for the analysis of radon samples.

As a result, Radonova is delivering materials and services for use on the African continent for the first time.

Radonova

“This order shows that radon is a global health problem. There’s a growing awareness of this issue in countries that haven’t paid that much attention to this in the past. The IAEA may not be a government authority, but it still has great influence and stringent demands when it comes to quality, reliability and support. We also know that we won this contract in competition with several other players and the IAEA chose us as the best option,” says Karl Nilsson, CEO of Radonova Laboratories.

“Only a few months ago we signed our first co-operation agreement in Asia. Naturally, it’s a pleasure to continue our international expansion into another continent. Regardless of the environment being tested, radon monitoring and analysis must always be carried out safely and reliably,” Nilsson concludes.

For further information on radon and radon monitoring, visit www.radonova.co.uk
IAEA stands for the International Atomic Energy Agency. For further information, visit www.iaea.org

Radonova uses date-marking for even safer measurement

By | Measurement, News | No Comments
date-marking

Radonova Laboratories introduces date-marking for the detectors used in radon monitoring. Together with the recently launched vacuum packaging, the date-mark ensures that the monitoring and analysis work can be carried out with the utmost reliability.

Tryggve Rönnqvist, technical manager at Radonova Laboratories, describes the benefits of date-marking the detectors:

“By date-marking each individual pack, we further increase the measurement certainty of short-term monitoring. If radon monitoring is carried out over seven to ten days after the detector has been stored for a year, this could have some effect on the result. Quite simply, it’s more difficult to measure lower concentrations reliably if the monitoring period is short and the storage time is long. Even though we’re talking about small deviations, we always strive to give our customers the most accurate monitoring results possible.”

Easier for stockists and customers with their own stock of detectors

“Above all, data-marketing makes life easier for international stockists and customers who have their own stock of radon detectors. Now they can quickly see how old the detectors are and optimise their warehouse logistics accordingly. Real estate agents are another good example of businesses that benefit from clear date-marking. Monitoring is often fast and frequent in this segment and many agents, therefore, often have their own supply of detectors. With date-marking, we’ve made it easier to use the detectors in the right order.

“Although our monitoring is already at the very forefront of reliability, clear data-marking of each detector and the newly introduced vacuum packaging helps us to offer even simpler, more reliable radon monitoring.

Radonova Laboratories is introducing date-marking on its detectors in November 2018. The newly launched vacuum packaging provides a maximum storage time of eight months. Both for short-term monitoring and three years for long-term monitoring. Radonova also recommends beginning long-term monitoring within 18 months because the measurement uncertainty decreases the sooner monitoring begins.

For further information about radon and radon monitoring, contact us here

Benjamin Portin sees opportunities at Radonova

By | News | No Comments

Settling into a new job isn’t always easy. Benjamin Portin, however, has quickly become a part of Radonova Laboratories. After starting as a temporary worker at Radonova, Benjamin now works full-time in the company’s production and analysis department.

“Naturally, it helps that, in my case, I worked at Radonova while I was studying. But I get the feeling that this is a workplace where you quickly become one of the team. It’s also a place where you have great freedom with responsibility. There’s very little micromanaging here, instead, everyone knows what needs to be done without needing instructions for each work stage,” says Benjamin.

Growth and strict demands have to be matched

As a world leader on a market with strict demands in all stages, the continued success is based on the company and employees being in sync. Promoting a corporate culture characterised by dedication and a willingness to learn is a key component. Another is that all employees see opportunities to develop.

“It’s nice to work at a company where you know that several of the managers started on the shop floor, like me. Anyone who is both driven and willing to learn has every opportunity to develop. This is a company and market that offers very exciting career opportunities,” continues Benjamin.

“Radonova is currently growing in several markets. At the same time, we’ve positioned ourselves as a company with very high quality, and the fastest delivery and analysis times on the market. In turn, this places strict demands on each individual employee. Everyone has an important role to play and we’re mutually dependent. Clearly this is a team effort,” comments Karl Nilsson, CEO of Radonova Laboratories.

The work itself is important

It’s estimated that more than 200,000 people a year die as a result of radon-related lung cancer. More and more countries are beginning to understand the importance of working to reduce exposure to radon.

“People’s knowledge of radon in general is still quite basic. At the same time, it’s clear that many people are surprised that understanding what the situation is where you live or work doesn’t have to be difficult. In many cases, remedying an elevated radon level doesn’t have to be particularly complicated either. Obviously, it’s more enjoyable to go to work knowing that what we do helps to influence human health for the better,” Benjamin concludes.

Benjamin studied the nature programme at upper secondary school. Today he works with production and the analysis of radon samples.

Radonova

Ecotrak® – radon measurement in soil

By | Measurement, News | No Comments

Radonova launches a new product for safe radon monitoring in soil

Radonova Laboratories is launching a new detector that makes it safer and easier to monitor radon in soil. The new Ecotrak® detector can be used ahead of new builds and property modernisations and provides quick, reliable information on the amount of radon in the soil being tested.

Unlike other commonly used soil detectors, Ecotrak® is covered by international comparative tests. The detector is supplied in a Tyvek bag, which protects against moisture, dirt and other factors that could affect the result.

Ecotrak®

Ecotrak® does not have to be returned for immediate analysis, rather it can be collected and stored at stockists for a short period. This enables more streamlined handling and means that detectors from several different monitoring periods can be sent for analysis at the same time.

“Monitoring radon in soil is relatively simple. The challenge is to monitor it in such a way as to provide a reliable result. In part, this means that the product itself has to be high quality. Also able to withstand the stresses that are part and parcel of monitoring in soil. However, it also means using an accredited laboratory that takes part in international tests. This enables us to carry out fact-based comparisons with large amounts of reference data,” says Karl Nilsson, CEO of Radonova Laboratories.

“By launching the new detector, we’re making it simpler and safer than ever to monitor radon in soil. No matter what type of construction is involved, there’s great value in understanding the radon situation. What’s more, in some cases the local building committee requires a study into radon levels before granting building permits. Should monitoring show that the site is what’s termed ‘high risk’, the construction can be made radon-proof from the beginning,” says Oskar Boström, product manager at Radonova Laboratories.

Ground radon in brief

Uranium and radium are the two elements that contribute to the levels of radon gas found in soil. Levels of radon gas can vary widely depending on the type of soil. As a general rule, the airier the soil composition, the higher the level of radon. Conversely, a more compact composition makes it more difficult for the radon to circulate in the soil.

Ecotrak® in brief

  • Covered by stringent international comparative studies
  • Not sensitive to moisture (large amounts of water do, however, affect the results)
  • Supplied in a protective Tyvek bag
  • Can be collected and stored for a short period (for efficient handling of multiple measurements)
  • Monitoring usually takes place over one to seven days
  • Can be used all year round (provided the soil is free of frost)

The recommendation is to use at least three detectors for the first 100 m² of the site where the property or construction will stand. After that it’s a good idea to have at least one extra detector per extra 50 m².

For further information about the new Ecotrak® detector, contact Radonova here

Radon measurement season in full swing

By | News | No Comments
season

Radonova’s new web application has a completely new and intuitive user interface and gives users secure access to reports, measurement jobs and other data, all updated in real time.

On 1 October the radon measurement season got under way in Sweden. You can actually measure radon all year round, but if you want an annual average for radon levels in your home or workplace, you have to measure them over the course of at least two months during the winter when heating systems are on. In Sweden this is between 1 October and 30 April. In practice, this means you have to start measuring radon levels by the end of February.  

We met up with Oscar Wännerud, who is in charge of the world’s leading radon laboratory. Here Oscar describes the measuring and analysis work carried out during peak season, and talks about how Radonova handles tens of thousands of detectors a month.

In brief, how would you describe your daily work in the lab during peak season?

We are now at the start of the season, so we are working on large volumes of deliveries.

Our automated production of radon detectors has been ramped up, running at top speed, from six in the morning until midnight. This is needed so that over the autumn we can supply 80,000 detectors a month.

In December, the detectors start to come back in, as at that point many customers will have been able to measure over two months. At that time we are still sending out large volumes of detectors. In the spring there are fewer deliveries to be made, as the measurement season is drawing to a close. At that stage the work switches to processing and analysing large volumes of radon measurements. International customers often measure all year round, resulting in a more even flow for these customers. This also means that we run all processes all year round but with varying volumes.

Are all analyses conducted at Radonova’s laboratory in Uppsala?

All radon detectors are manufactured in Uppsala and then distributed across the world. The same applies when customers have completed their measurements. The detectors are sent back to the lab in Uppsala for etching, reading and analysis. This requires reliable, effective and well-functioning procedures and processes for both outgoing deliveries and incoming deliveries of exposed detectors. We need a rational and tightly controlled approach to be able to handle the large volumes we deal with.

Have any new issues or challenges arisen this season?

The work has so far been characterised by increased volumes and rapid delivery times. We are selling more measurement services than ever, yet we have still managed to further reduce delivery times. All so we can give our customers the best possible service.

What do you feel is the recipe for success when it comes to reliability and assurance?

Accreditation is an important base for a monitoring laboratory. We really benefit from being audited by external bodies. Well-established procedures in combination with ongoing improvement work are required for us to be able to remain at the forefront within radon measurement. We are also involved in various international comparative tests in order to ensure that our processes maintain a very high level.

Have you got any general tips for companies or private individuals who are intending to measure radon?

It is simple to measure radon using Radonova’s services. Via “My Pages” you get full control of your data and can easily export it when needed to either PDF reports or Excel files for further processing/statistical purposes. When our customers use My Pages to record data, we get immediate access to the measurement data. This in turn produces quicker analytical results. Another upside to using My Pages is that it minimises the sources of errors, which can easily arise when work is performed on paper and is characterised by multiple manual steps. Via My Pages customers can easily supplement data and get rapid responses.

How do you think things are going to develop in radon measurement?

Automation and digitalisation are the two biggest future trends. The combination of automated processes and customers having increased access through digitalisation will be a crucial success factor. We expect to minimise lead times for outward delivery, but above all we will be reducing the time it takes to perform analyses. I am also convinced that Radonova is ideally positioned to continue as a global leader in the measurement and analysis of radon samples.

 

For further information about radon and radon measurement, visit FAQ

Vintage Illuminated Watches, Clocks and Dials Emitting Radon

By | News | No Comments

In the beginning of the 20th century, scientists developed a way to mix “radium 226” with paint. This created ‘radioluminescent paint’. This breakthrough led to the new product being applied to clocks and telephones. Even airplane instrumentation panels (all now considered to be vintage), enabling the devices to glow in the dark.

However the new approach led to unforeseen circumstances. By 1925 a group of radium painters, later referred to as the Radium Girls, sued their employer over health issues. This was believed to be stemming from the ingestion of radium through a practice called ‘pointing’ their brushes. They would lick the ends of the brushes to refine the bristles into a point. Subsequently ingesting radium remnants from the brush. As a result, by 1930 ‘pointing’ brushes was no longer done by mouth and there were no more incidences of malignancy due to radium. This led most people to believe that radium was not a health risk provided you did not consume it.

Sixty years later researchers from the University of Northampton wondered whether since radium decays into radon gas, “vintage” clocks, watches, phones and such items, previously coated in radium paint could influence radon gas levels as the radium naturally decays.

The study was performed in a small bedroom and consisted of measuring the radon gas level for a baseline. Then adding 30 radium dial watches to the room to see how much the radon level would change, if at all. Upon retesting it was discovered that the room’s radon level rose to 134 times the level at which the EPA (United States Environmental Protection Agency) recommends action.

The data from this first study of its kind indicates a previously unconsidered risk. This was from owning, collecting, and storing radium dial watches or other items coated in radium-infused paint.

So keep calm, and think before you go vintage.

Read the Original Article Here
vintage

Acquisition of Gammadata provides Radonova with a Complete Program for Radon Measurement

By | Measurement, News | No Comments

By acquiring the radon measurement instrument division of Gammadata Instruments, Radonova Laboratories has further strengthened its position as a world leader in home and workplace radon measurement. Through the acquisition, Radonova has added several advanced instruments and products to its portfolio. Broadening its range of radon measurement technologies.

By offering a comprehensive program for radon measurement, Radonova is responding to the global demand for safe and efficient radon measurements in homes and workplaces.

“With this acquisition, we get access to leading edge products which are at the absolute forefront of research and development. For example, ATMOS, the world’s most sensitive radon sniffer. We now have an expanded portfolio of instruments and products. We are in a position where we can offer new and existing customers an optimal radon measurement program. Particularly in the rapidly growing European market of workplace radon measurement,” says Radonova Laboratories CEO Karl Nilsson. One of Gammadata’s founders, Dag Sedin, has 30 years of experience in instrument development for radiation measurement. He will take on the role of consultant at Radonova Laboratories. Dag comments on the acquisition:

“As we are now part of Radonova Laboratories, there is enormous potential for intensifying our research to ensure that we continue to deliver the most innovative radon instruments and sensors available on the market. Radonova provides us with a great platform to further develop the new product lines we have in the pipeline. The first of these will be an update to the ATMOS radon sniffer. In addition, Radonova has an established export network that will provide numerous new opportunities for growth when new products are released.”

For more information on radon and radon measurement visit www.radonova.co.uk

For more information, please contact Karl Nilsson, CEO of Radonova Laboratories AB Phone: +46 (0)70-639 01 31, E-mail: karl.nilsson@radonova.com

Acquisition

The world’s most sensitive radon sniffer ATMOS is now becoming part of Radonova’s extensive program for radon measurements.